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NASA TTF-476

QUANTUM EFFECTS IN INFORMATION TRANSMISSION SYSTEMS

I. A. Deryugin, V. N, Kurashov

ABSTRACT. The basic assumptions of information theory
change radically in the optical and infrared bands for a
low level of eigen noise in the communication channel. The
general expression for the entropy capacity of narrow-band
and wide-band communication systems is obtained, and the
requirements for optimum signal characteristics are determined.

High frequencies have been employed in an ever increasing amount during /292%
recent years in communication technology. The development of lasers and
amplifiers has led to great success in utilizing the infrared and visible
portion of the electromagnetic wave spectrum. There is no doubt that effective
systems of communication in space and on the earth will be developed in the
near future in this area. The high carrier frequency in conjunction with the
very low noise level of these systems provides for an enormous information ca-
pacity of the communication channel.

However, under these conditions different quantum phenomena which may be
disregarded in normal radio technology are beginning to play an important role.
In particular, definite changes must be implemented in the basic assumptions of
the classical information theory: the model of a continuous communication
channel, its information capacity, and the optimum spectral characteristics of
the signal. Let us investigate a simple example. Employing the classical
model of a continuous communication channel, Shanmon (Ref. 1) demonstrated the
fact that the transmissivity of a channel with a wide band W for an average-
strength signal Pa in the presence of additive white noise Pn may be determined

by the following formula
P
C=Wln(l+?at‘1—.). (1)

Within the limits of customary noise temperatures, this expression coincides
with our intuitive concepts, and provides a good description of the information
properties of a communication channel. TIn the region where Tn >0 -—i,e.,

Pn -+ 0 —- expression (1) strives to infinity in the case of arbitrary pass

bands. This result is customarily explained by the fact that in the absence
of noise any arbitrarily close signal levels may be distinguished, and conseq-
uently the number of initial symbols for the transmitted signal may be made
infinitely large in the case of limited average strength Pa‘ As a result,

the transmission of any one signal contains in itself an infinitely large
amount of information. This line of reasoning, which is absolutely correct
when viewed from classical physics, is in direct contradiction to the principie

* Numbers in the margin indicate pagination in the original foreign text.



of uncertainty. In actuality, it is impossible to measure a field with
arbitrary accuracy within a finite period of time, since the following relation-
ship holds
AEAf > h.
(2)

This relationship leads to the fact that, even when there is no noise, the /293
information capacity of the channel remains limited. Thus, expression (1) no
longer provides a correct description of a real communication system.

Certain changes in information theory appeared in different forms in the
studies of different authors before the discovery of lasers. For example,
Gabor (Ref. 2) introduced the concept of "quantization'" as applied to communi-
cation channels. He was apparently the first one to consider the influence of
quantum noise on the general noise properties of radiation receivers. The
fundamental study by Callen and Welton (Ref. 3) made it possible to analyze
the noise of amplifiers at very low noise temperatures. It was found that
noise is limited from below by the so-called fluctuations of the zero field,
whose strength equals hvW, where W is the instrument pass band.

The conclusion was immediately reached that the information capacity of
information receivers remains limited even at absolute temperatures which
strive to zero. Several authors have called attention to this fact [see, for
example, (Ref. 15-11)]. However, these studies did not provide a comprehensive
picture of the quantum phenomena in communication channels. Stern (Ref. 4, 5)
and Gordon (Ref. 6, 8) developed the model of a quantum channel. On the basis
of this model, they considered not only noise of the zero field, but also the
phenomena related to the discrete nature of electromagnetic radiation. The
application of this model to different communication systems revealed interest-
ing new laws, which were not described by classical information theory even when
zero field oscillations were taken into consideration. The discussion presented
below primarily deals with the studies (Ref. 4-8). We shall also present certain
original results pertaining to wide~band communication channels.

Model of a Quantum Communication Channel

The model of a photon channel may be formulated from the two basic postu-
lates of quantum theory:
E = hv = ho; (3)
AEAt > k. 4)

The introduction of the first postulate indicates the change from a continuous
(wave) description of the electromagnetic field to a discrete description
(quantum). The second postulate imposes a limitation upon the number of in-
dependent variables which describe the radiation. In actuality, it is necessary
to know the 2Aw variables in classical electrodynamics in order to determine

the state of the field whose frequencies are concentrated in the Ay band. For
example, these may be the amplitudes and phases for expanding the field in
Fourier series containing Av terms, or the values of the electric and magnetic
field amplitudes of each type of orthogonal wave. In quantum mechanics, it
follows from relationship (4) that the measurements of amplitude and phase, or /294
of the magnetic and electric fields, are not independent. Only Av independent




measurements may be performed per second, and consequently the state of the
field may be determined by the Av variables.

Let us now represent the quantum channel in the form of a portion of space
(time -~ frequency) which is delineated by the band 4v and the time 1. Let us

divide the selected portion of space into an element having the dimension AvAt.
In order to satisfy the uncertainity principle, we must set

AvAr = 1. )

Let us now assume that the signal source concentrates a certain number of
photons in each element. Thus, each element represents a degree of freedom of
the signal. It is assumed that the channel has a narrow band, in the sense
that the photon frequencies in each element cannot be distinguished. Under
these conditions, the role of the receiver consists of determining the number
of photons in an element. Thus, the receiver represents an ideal quantum
recorder. The physical feasibility of such a channel and its efficiency for
different information receivers will be discussed below. We shall obtain the
maximum entropy which the signal may have in such a channel. According to
statistical mechanics, the entropy H per one degree of freedom may be written
in the following form

H=—};)p(n)lnp(n), (6)

where p(n) is the probability that the given element contains exactly n photons.
The condition that the mean number of photons is retained

2np(n)=17, (7

n=0
and also the normalization condition
2 pn) =1 (8)
n=0
are imposed on the distribution function p(n).
It may be readily seen that condition (7) is identical to the condition

that the mean strength is retained for a channel having a narrow band. In
actuality, multiplying by hvAv, we obtain

i nhvp (n) Av = NavAv =P. 9)
n=0

In order to determine the maximum possible entropy, we shall vary (6) in terms
of the distribution function p(n) under the conditions (7) and (8). We then
obtain the equation /295

—Inp(m)—1+i+p=0,
where A and p are arbitrary constants.
We thus have

p(n) =oae", o= el (10)



The constants o and A may be determined from conditions (7) and (8):

o S e =N,
dad
]
aVYer=1
>
Performing summation, we obtain the following system of equatiomns
e =1
1—é
I L (11)
=N
(1— e
from which we have
A=—In(l+)
N7, (12)
o= !_
14-N
We finally have
1 N ¥
o -5 (7 ) (13)
We may find the maximum entropy of the photon distribution in the channel
I . MX
=~ eernteen - — (25 + 525 -
n=0 (14)

——lna—AiN =In(1+M +Nin(l T%)
The rate at which entropy arrives, i.e., the entropy per unit of time, is
c=-2, (15)
or, with allowance for (5),
C=AvH = Avin(l + W) + SN In(1 + ). (16)
Employing relationship (9), we obtain
C=Avln(l -i-h—v-’;—v)-i—%ln(l +’W£v)' (17)

The last formula is a quantum analogue of expression (1) in the case /296
Pn -+ 0. The first term in the right hand side of (17) coincides with the right

hand side of (1), if we take the fact into account that the noise is limited by
oscillations of the zero field. The second term of (17) is a purely quantum
term caused by the discrete nature of the photon field. Under ordinary con-
ditions, the first term plays the basic role. If the mean number of photons
per second is less than unity, the second term dominates.

We should point out that it is not possible to describe a channel by
specifying the precise number of photons at each moment of time. However,
the number of degrees of freedom for the signal does not depend on the particu-
lar methed of description. Consequently, the expressions which we obtained
must be valid when any other variables are selected, as it may be assumed that

4



expression (17) is universally wvalid.

In conclusion, we may find the rate at which information is transmitted
over a quantum channel having narrow band when there is additive noise. The
amount of information transmitted under these conditions cannot be greater
than the difference between the total entropy of the signal and the noise, and
the entropy of only the noise. In order that this value may reach a maximum,
the signal and the noise -- taken together -— must have the statistical prop-
erties of the noise. Thus, the rate at which information is transmitted may
be determined by the expression

C= AV(”Pawn—Hpn\ = Avlin (l +f%j—Tfn) +
P+ P, hvAv P P
(14 ) a1+ ) Eon(1 52)

or

p Pyt P
C= a hvA
A'vln(] T P, +;I1wAv)+ hv nln(l +Pa:’|_;n)-—

P hvAv
‘T?‘“(‘WLPH)- (18)

It is of significant interest to determine the degree to which the limiting
value (18) of the information transmittal rate may be attained. 1In addition to
the customary conditions of optimum encoding, certain interesting problems
arise which are related to the possibility of information being transmitted by
a signal. We shall deal with these problems below, when discussing the quantum
recorder.

Channel without Noise with an Infinite Pass Band

Let us investigate a signal whose frequencies cannot be assumed to be
identical within an accuracy of the uncertainityprinciple, essentially the pho-
ton distribution with respect to frequency. This case is realized, for example,
in a wide-band channel when a modulated signal is being transmitted. A similar /297
problem arises when we investigate a system of multi-chamnel communication with
frequency separation of the channels. In both cases, it is interesting to
find the optimum (with respect to information theory) strength distribution in
terms of frequency.

The study (Ref. 4) investigates a similar problem for a channel without
noise with an infinite pass band. Let us investigate it in greater detail.
We shall assume, as was done in (Ref. 4), that the source generates a large
number of narrow lines independently. The photon energies of each such line
are approximately the same. The mean quantum occupation number of the ikl
line will be designated by Ni' As was indicated previously, the entropy of

such a narrow-band signal is limited by the quantity
Hi = NyIn (1 +—A'T‘)+ln(l+M). (19)

The total entropy of the source signal per unit of time equals



-
H = ZTEHI.— (20)

i=1
In order to satisfy the uncertainity principle, we must set the follow-
ing, just as previously,
AtAv = 1.

We then have
. - 1
H=2av Y H, =sz[N_;ln(l +-—A—,;)+ln(l + N).

F] =1

(21)

Investigating the extremum of this value, we obtain the dependence N,= N, (V)
P i 71 MY,

at which (21) assumes a maximum value. Let us impose an additional condition
that the average strength be constant

AvEN,hv, =P, (22)
=l
The variational problem for the conditional extremum (21) leads to the
following equation

72—1 {Av g[M ln(l + Xi,') +In(l + N,]] +AAv§Nihv,} = 0.
We thus have
]n(l + ’,::_‘)+MV1=0
' ' (23)

Ny= ———————
R
e

In order to find A, we substitute (23) in (22):
had hv,
wE o P

It is apparent that A < 0, since in the opposite case the series diverges at
infinity. Therefore, we shall replace X by -\ below, so that

o hv,
MY =P (24)
i=!
1

My’ (25)

The quantity Av in this equation may be decreased until the condition AvAt = 1

N; =

is satisfied. We shall assume that Av may be made very small., Let us calculate

A for the case Av + 0. Then the sum may be replaced by the integral
> hvAv 2 hwdv
li . = .
AVTOE i1 (5 P
The integral in the right hand side may be reduced to the following form

1 7 xde 1 a
e [ R
0

o]

[ ——



We thus determine the following

. i
=R ‘ (26)

@) = —m— | |
Vo g 27)

Let us introduce a certain effective temperature
eff- kn Y 6Pk . (28)
We then have ‘ :
' .1
N —_—

N = (29)

kTeff_. 1

Thus, the entropy of a quantum signal of an infinite band has a maximum
in the case of the occupation number distribution (29). This is the Bose—
Einstein distribution for a body which is heated to a temperature of Teff'

Introducing the spectral density of the radiation strength

P (v)dv = hvN (v) dv. » . (30)
we obtain ‘ : ]
. hv
P (’V) = ':'1“ (31)
e efﬁ—— 1

Formulas (29) and (31) represent a natural generalization of classical -
theory, according to which the entropy is at a maximum in the case of a uniform
spectral distribution of radiation emitted by an absolutely black body which
is heated to the temperature T off :

Pclass(v) =klegg- - . 7 (32)

In the quantum case, the optimum frequency distribution is also determined
by the radiation of an absolutely black body. The signal ceases to be “white",
i.e., its spectral density depends on frequency.

Expressions (28) and (29) make it poss1ble to establlsh the fundamental
limit for entropy which may be contained in'a s:Lgnal ‘having the mean strength
P. In actuality, for Av + 0 we have .

_THwa ,
e

where HM=NMMP+ﬁﬂ+mﬂ+MW=
k—= ————l v _ | 7 V
e = )
*Tesf . o Mlefr .

Transforming this expression, we obtain

hvdv (34) -

==t
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After simple transformations, both integrals are reduced to the tabulated in-

tegral
5 & — 1 ~ 6
We then have " % m
max kR 6 (35)
or, taking (28) into account, we have
I Vs (36)
max 3 [

Such information which is maximally possible may be transmitted per unit
of time over a channel with an infinite band without noise by a signal having
the strength P. It is interesting to note that Gordon (Ref. 6) obtained such /300
an expression with a coefficient which was somewhat too low by direct deter-
mination of the number of possible distinguishable levels allowed by the un~
certainity principle.

Channel without Noise with a Limited Pass Band

The problem examined above is of purely theoretical interest, since it
is impossible to produce a communication system with an infinite pass band. It
is much more interesting to determine the maximum possible rate at which in-
formation may be transmitted over a channel with a limited band. We shall now
examine such a channel.

We should first note that the very method by which the preceding problem
is solved indicates that, for a signal having a limited band, the entropy
reaches a maximum for a distribution of the occupation numbers which also obeys
the following law
1

hv o
expzf-—l

N('V)::

This is due to the fact that the summation limits, which depend on the pass

band, have no influence anywhere on the distribution calculation. The summa-
tion limits will be of importance when the temperature T is calculated, which
in this case will not equal Teff' Generally speaking, T depends both on the

signal strength and on the pass band, and the stronger it is, the greater is
the strength and the narrower is the pass band.

However, let us now examine the information transmission rate of a signal
with the Bose-Einstein distribution, whose temperature does not depend on the
pass band. When it is advantageous, we shall take this dependence into account.
We shall everywhere assume that Av - 0, since we shall employ integrals, in-
stead of sums.

The entropy of a signal having the Bose-Einstein distribution in a limited
pass band W equals




w hv
7y P 3T
H=\HMadv=\ —gy—dv+ | In| —55— |adv.
exp k—f‘—l exp o — 1
[

(37)

In order to find H, let us introduce the substitution in the first integral

Y
T kT
and the substitution in the second integral

hv
exp —
y=In|____*T__
hv
ngET'—l

After simple transformations, we then obtain

hw
P T
AW In "W
7 exp o= = 1

H—"S’”—H y _ydy
TR ) er—1 k e —1
0

Changing the integration limits in the second integral and the notation for the

integration variable, we obtain

Let us combine both integrals

(] a
where
114
a=In R
- Y%
expEF-—l .
hWw
b=

(38)

(39)

2
The first of these integrals is a tabulated integral which equals =.

Thus, the problem consists of calculating the second integral
b
xdx
1= -
Se“‘—l
a

This integral cannot be expressed in terms of elementary functioms.
study, let us represent the integrand in the form of the series

(40)

For this



b w
/) =S xe—r=dx.
a n=I
Changing the locations of summation and integration signs, we obtain 302
nd re " e—nx >
- ST
n=1 a
The first sum may be readily calculated
-
- = —mn{l—e®, x>0,
n=1
We thus find
= e—xn b
I=—aln(l—e9+bin(l—e— Y 5 l
n=1 a
Substituting a and b, we obtain
bIn(l —e ¥ —aln(l —e-9 =
hW - hW - hW 4
_hw P N 4 T __hW BT oy
-_len(l e ") lene kT]n(e I)=0.
We finally have -
kT [n? e P,
(e )
n=] a
AW 14 (41)

oo

- —T=n
KT w2 QY —e kr)ﬂ_e kT
H‘T[F* 2‘ 2 ]

n=1

h . . .
In the case k—?l‘q - 0, the first sum vanishes, and the second sum strives to

the value — and H » 0. 1In the case £—¥ > o, the second sum equals zero, and

2
the first sum equals I~ . We then have
6 kT _n2
H-»—- H.

# 3~ Ymax-
If v _ In 2, then both sums are equal, and we consequently have

kT
kTn® T J—

6 2
In order to study H for different W and T, let us find %}} and g—l% , first

assuming that W and T are independent variables. This is valid for large pass /303
bands or for small strengths:

- _hw _hw .4
oH kT [(1 —e AW Lt "T]h _
W h n n |kfT
s 42)
W f hw
kT [expﬁ —l] (43)

10



H - - —(Classical
‘Quantum

— = —-Classical
* Quantum s

Figure 1 Figure 2

Let us find the asymptotic behavior of these quantities. First of all,
the investigation shows that

aH ol
W>0anda,r >0,

from which it follows that the entropy increases with an increase in the
strength and the pass band.

Expanding the uncertain terms in formulas (42) and (43), we readily find

that oH
lim - = oo}
w-oW
4
lim 9 — 0(’1“_78 ");
W OW kT
lim & _ 2%
r-007T 3h
In order to find lim kS , let us calculate H approximately in the case
T
hW << kT. We may then rewrite H in the following form
W hv F
®T | kT
H = Sﬁdv+ J ln[l + h_v]dv'
¥ kT 0

After simple calculations, we obtain
T kT hW
H=W+W1n(1+£i7)+—h-ln(l+;-f). (44)

We thus have
oH _i nl1 ’_IY_).
Wlnw:kr_ ! ( )
. OH hW
tim 57 = 0(57)-
All the results obtained differ from the classical results. As is known:

P
H:yags =WlnF.= (45)

/304



oH, P
—class 1, P, = const (P) ; (46)

Hoiass Oclass WPs
oP "~ er =~ P * 47)

The results of these considerations are illustrated by graphs given in Figures
1-4,

%
-~ —-Classical \
:Quantum \ - = — Classical
\ .
\ Quantum
19
Figure 3 Figure 4

It may be seen from the above relationships that, in contrast to the
classical formula, 8H decreases with an increase in W approximately according
oW
to an exponential law. Thus, the widening of the channel band in the case
hW < kT barely leads to an increase in the entropy.

The second interesting consequence is that for small signal strengths,
the entropy increases when the strength increases much more slowly than would
follow from classical theory. The following conclusion thus must be drawn:
in the case hW < kT, in order to increase the amount of information which may
be introduced in the signal it is valid to increase the pass band. On the
other hand, in the case hW > kT, it is valid to increase the signal strength

(since for %% > %% strives to zero only as %-, while %% strives to zero as
hW
e kT ).

Let us now consider the dependence of the constant T on the pass band W.
It is apparent that this dependence will be significant primarily for small
pass bands or for large strengths, i.e., for the case E% <<1l. 1In actuality,
K

T may be determined from the condition

. hvd

v
Sﬁ.:pa
S

12
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or

aw
k”‘if xdx
T yroi—h
o
hwW . . . n2
‘For large KT ° the integral differs very little from-g— , and therefore
T ~ VPa . For small %% , the integral depends strongly upon %% , and therefore

we cannot assume that T = VP const. . For this case, assuming that x << 1 ,
let us expand the integrand, confining ourselves to only the first term of the /306

expansion:
aw

[ T (48)
R jl{-x—l a
0

Let us calculate the entropy for this case. Tt was shown above thatfor hWw << kT

we have
_ kT kT AW
H W+W'“(‘+W)+T'"(l+rr)-

Substituting T, we obtain

H=w+wi(1+ ;2)+8m(1 + 5 ) (49)
If we pass to the limit, formally letting h > 0, we obtain
_ LN (50)
H—-WIHETV;-’-,
which corresponds to the classical information theory in the following case
Py = M7t (51)

pr)
Expressions (50) and (51) determine the transition to the classical case.

If it is assumed that the constant PO is arbitrary in the Shannon theory, and

consequently the level from which the entropy is measured is also aribtrary,
the quantum mechanical conclusion establishes the absolute measurement level
which is determined by the strength of the quantum noise hW2.

Channel with Noise

Let us assume that the channel contains thermoadditive noise with a
specific strength distribution Pn (v). We shall investigate what spectral

distribution Pa (v) the signal must have in order that it will transmit a maxi-

mum amount of information. 1In the classical case, this condition may be written
in the following form (Figure 5).

Pa v) + Pn (v) = const. (52)

The signal must be large at those frequencies where the noise is small.

In order to determine the corresponding condition in the quantum case,
let us write the information transmission rate when there is noise in the

13



following form 307
Ay}

7 | = E{Nc+n("t) In[1+ H:T'u—)J + 111 + Negn (v)] —
t =1 : ¢

w1 Mo )i [1-4 gl ] i1+ 4, 0

- V; — In Y.
IR - n (Vi) n[ + Nn(vf)] n (V0] (53)
The problem consists of trying to determine
the extremum of this expression. This en-
tails certain difficulties, in view of the fact that the expomential distribu-
tion is not additive, and consequently

Neyn# Ne + Nn'

C= 1—;', {Heyn— Hpj =

Figure 5

However, we shall employ the approximate equation Nc-l-n = NC + Nn which,

generally speaking, is practically satisfied in real channels (Ref. 6).

Under the given assumption, the information transmission rate may be
written as follows:
w

Av 1
C= E Av {Nc (V) + Np ()] In [1 + Ny, () (vi)] +

i=1
1 (54)
It Ne@) + Ny o) — Ny e In [ 14 | —

Il + Ny -

Let us find the extremum of this expression under the condition that total

signal strength is constant
.4

i N (vi) hviAv = const. (55)

i=!
This problem leads to the equation

w

"
ac a jN i) hviAv = 0.
AT A }.J ¢

=1

Substituting C, we obtain

or

1
Nc+N =;m—l—-

The constant A may be calculated from condition (55). It is apparent that
A < 0 based on the same considerations as in the preceding cases.

14
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I.z.,,

Thus, the maximum information transmission rate is achieved for given

noise if the total ensemble produces the Bose-Einstein distribution (Figure 6):

hv

P+ Pa(")=m- (57)

o
The constant in the right hand

[ side of (55) must be selected so that

// where exceeds the level of the noise
strength; otherwise negative strengths
l], will be encountered.

The result (57) differs from the
classical result at high frequencies,

Figure 6 where the signal strength must decrease.
For low frequencies, for which _1_ >>hv,
A

we may write

) — hv 1
PO +P O =1rmnpnr=t1 ="

which coincides with (52).

We may readily find the maximum information transmission rate by this
channel. Let us assume that the noise, and also the signal + noise, obey the
Bose-FEinstein distribution. For the case hW << kT, employing (49), we then

obtain € = Hopom B —
ol B
‘“W'"(1+hw=) 3 ( (58)
=¥ (14 g ) + R (1+p1“’;n)
)

This formula is valid only in the case Pa’ Pn >> hW2. 1If this inequality is

not satisfied, we must employ expfession (41).

Quantum Recorder

Let us first study different quantum systems, and let us make certain
general remarks. TFormulas were presented above which established the upper
limit for the amount of information which may be contained in a signal. How-

ever, it is not entirely apparent that all of this information may be extracted

from the signal at the receiving end of the channel. The essential difference
from the classical case lies in the fact that in quantum mechanics the proper-
ties of the recording device inevitably influence the signal being recorded,
and change it to a certain degree. Thus, we cannot draw any conclusion re-
garding the ability to achieve these conditions from the expressions obtained

15

the level of the signal strength every-



above. Under these conditions, the construction of an applicable receiving
device acquires particular importance. If it is sufficient to specify the
resulting receiver noise level in classical theory in order to describe the
informatf~n properties, in the case of a quantum channel -- as we shall see
below —- a special examination must be made for each type of receiving device,
independently of its noise properties.

As has already been pointed out, a quantum recorder represents an ideal
receiver when the model described for the quantum channel is employed. How-
ever, the very concept of "idealness'" necessitates an additional discussion.

We shall use the term mathematically ideal to describe an amplifier at whose
output precisely Gn photons appear when n photons enter at the input, where G is
the amplification coefficient. The information efficiency of this amplifier
equals unity. As we shall see below, in physical terms the existence of a
mathematically ideal amplifier is impossible. Each real amplifier only
approximates this idealization to a certain extent. Therefore, we shall intro-
duce the concept of a physically ideal amplifier, where the term "idealness" is
employed in the sense of the absence of eigen noise. The investigation of

such a amplifier considerably decreases the computational difficulties.

For small amounts of photons entering the input, it may be assumed that
the device advanced by Weber is physically ideal. For large occupation numbers,
a wave guide maser represents such a device in the case T = 0°K. Let us
examine both of these receivers, and let us determine the extent to which they
approximate a mathematically ideal receiver.

Binary recorder. If the mean occupation numbers of the photons are small,
so that Pa << hvW, only two probabilities will differ from zero: for production

of no photon, or for production of one photon. Let us assume that the receiver
is distinguished by only two conditions: there are no photons at the input, or
there is any number of photons at the input. It is apparent that this system
operates efficiently only when there are small occupation numbers. We shall
call this type of a device a binary quantum recorder.

Let us assume that the signal being transmitted consists of an arbitrary /310 ¢
distribution of impulses, each of which has the duration W—1. The probability
for an impulse to be transmitted in any given time interval equals Q. If the
receiver detects even one photon in this time interval, it records 1, and if
no photon is detected it records 0. We shall assume that there is no noise in
the channel. 1If an impulse is transmitted, the receiver may record both 1 and
0. 1If 0 is transmitted, the output signal always corresponds to 0. Figure 7
shows an illustration of the possible cases. If the signal is sufficiently
weak when passing through the channel, the photon distribution at the input
may be described by the Poisson law with a high degree of accuracy. According
to this law, the probability p(n) of obtaining precisely n photons equals

pin) =2 e, (59)

Thus, the probability of obtaining not even one photon equals e~8, and the
probability of obtaining one photon equals 1 - e~S, These probabilities are

also shown in Figure 7.
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Figufe 7

Let us determine the information efficiency of a receiver as follows:

H,.(9)

Here H (y) is the entropy of one symbol of information to be received which is
determined by summation over the probability of all possible symbols; Hy (y) —-

arbitrary entropy determined by the probability of receiving the symbol y when
the symbol x enters the input:
H{g =—F pyinp ) (61)
v
He)y=—p00) X pe () Inp. (). (62)
x v

According to the well known Shannon theorem, the quantity
[ =Hy)— He(y) (63)

determines the amount of information extracted from the signal during reception, /311
and consequently n represents a measure of the receiver efficiency. If n =1,

then all the information contained in the signal is received. If n < 1, then a
portion of the information is lost.

We may readily find H(y) and Hx(y) by employing (61) and (62). We have

P(l) =QU—e~;
PO =1—Q(—e;

P (0) =e5
P(l)=1—es
P (0)=1
Pu(l)=0.
Thus, performing summation, we obtain
Hy=—Q —e)In|QU —e3)}— (64)
-1 - I—e 9! 1 — l_..—S;
{ QU —e ) ln{l —Q(1 —e9)] 65

He@) = —Qle~*Ine™+ (1 — =9 In(l —e~9;
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I=—Q(—e9mQ—11—Q(U —e-9lIn[l —Q( —e~9)] +
+ Qe“ In e~s, (66)

QUI—e=9In[Q(1 —e=)H[1 — QU —e=s)lIn[1 —Q(1 —e=9)]
QleSine+(1 —e~Sin(l —e™ ) (67)

n=1—

We should note that the quantities s and Q may be interrelated, if we take the
fact into account that the mean number of photons entering the input in the
period of time Ww-l is maintained. Since the mean number of photons received
in one impulse equals s, during the time Ww-1l, Qs photons are received on the
average. Consequently, we have

Qs = N = const. (68)

Substituting Q from equation (68) in (66), we find the value of I for different
N and s. Differentiating the equation obtained with respect to s and setting
the derivative equal to zero, we obtain the condition of maximum I:

s —s _ s
ln[ﬁ-4-e - 1]__-;;—::—; ) (69)

s 1
This equation may be solved by a numerical method for each specific value of

N. Figure 8 shows the dependence of the optimum amplitude of impulses received
SO upon the mean number of impulses received in the time W‘l If we know SO’

we may determine the maximum information efficiency of the recorder.

So |
(Photon) P
74 1)
" ;
a7
s
6
4
2 P
N (Photon) 0 . c"hve
0T i 4 5 6 & 0 2 0T ot w07 w0
Figure 8 Figure 9

If there is additive noise in the channel, just as previously, we may
compile a scheme of probabilities and may calculate the efficiency n. Figure
9 presents a graph showing the dependence of n on N for different mean numbers

of photons of noise Nn. In the limiting case Nc << l, Nn = 0, we may obtain

7 1
= Ve In - . (70)

Comparing this expression with formula (14), we find that
1 1 1
= == =] —-— .

N 1 In
Ncln: )

c [
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The information efficiency of a binary recorder may be made arbitrarily
close to unity by decreasing Nc' However, as follows from Figure 9, even for

very small ﬁc,n differs to a considerable extent from unity. For large Nc’

a binary recorder is quite inefficient, as would be expected.

Quantum recorder in the case Eb >>h . A wave guide maser with no noise

may serve as an ideal energy-sensitive receiver for large population numbers
of photons. This type of maser was studied in detail in (Ref. 12). Let us
examine a segment of the wave guide which is filled by an active substance
(Figure 10). We shall assume that the device operates at 0°k, and there is

no radiation from the wave guide walls. Photons with an exponential distribu-
tion (13) enter the amplifier input. We must find the probability pn(k, L) of

precisely k photons appearing at the output. This problem was completely
solved in (Ref. 12). Based on the expressions obtained in this study for
pn(k’ L), we should be able to find the information efficiency of the amplifier

for arbitrary amplification factors G. Unfortunately, attempts to perform this
calculation have encountered computational difficulties. Therefore, we shall /313
confine ourselves to the case NC >>1 and G >> 1. For such an amplifier, we

have [}
iyeE

Py(k)=pn(k, L) = (G—onx——'

(72)

i.e., the probability may be described by a Poisson distribution. The form of
this distribution is shown in Figure 11.

= L —
X Poln}
74 8 n=~100 630
/ 1
n K 6 X
— ] ———— , ne200
) ]
/ : |
2 ' !
] ]
) -1 1
N7% ] ai Fp (hx +dx) 5 0 pr)
Figure 10 Figure 11

If there are n photons at the input, we may expect not only Gn photons
at the output, but also a certain other number. Thus, a portion of the informa-
tion is lost.

The output photon distribution may be described by the function
p () = P (n) pa (k) (73)
n
where p (n) is determined according to (10) and (12).

After simple transformations, we obtain
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p (k) = aueik, (74)
where
o, = 1/(1+ N)G

A =— /(1 + NG|’ (75)

We shall be interested in the probability of recording n photons when k photons
are transmitted. This probability equals

X P (n) = pa (B) 5. (76)
. _ n
Since p (n) = ae then
)’ﬂ n k
pk(ﬂ)=(%—) -nl!exp[—g(l-l-lkc)]- 77)

This equation is valid, generally speaking, only in the case 0 < n < k.
However, we shall assume that it is satisfied for any n. The error of this /314
approximation for large G and N is very small. Taking the fact into account
that

N
7\. -— o ph
l' Ghe 1+ N ey

we may transform (77) to the following form

Mmh -M
prin) =22 (78)
where \
ke™n
M= a9

We have here obtained the probability of recording n photons in the case when
k photons were transmitted. This probability may be described by the Poisson
distribution with the average number of photons expected M. Let us now
determine the arbitrary entropy. By definition, we have

@ -

He(m) =— 3 p()) ¥ pen)Inpe(n). (80)
k=0 n=0
Since
Inpe(n) =nlnM—
—M—In(n)

and it is assumed that n is sufficiently large, we may employ the Stirling

formula
mmn=@+g)mm_

—n+1InyVon

Taking this relationship into account, we obtain
Inpe(n) =ninM —

—(n—l—-;—) Inn—M— (81)
—n)—InV=x.
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Substituting (81) in (80), we obtain

? o
10 N pe(m) In py (m) =
n=0 (82)
08 =erM-‘an_ﬂ—Epk(n)(n+%)lnn,
n

a6 where the following equations are employed /315

-
04 Do) =1

n=0
62 -

npe(n) =M.
Let us determine the last term in

wo* 0? 0? P 0e 0o c
¥»CPS equation (89). For this purpose, let us

. expand 1ln n in power series with respect
Figure 12 to (n - M)/M:

n—M
lnn=lnM+ln[l+ — J=

(83)
n—M 1 (n— M)
=mM4{7Wn—5 Mr—+“].
Substituting (83) in (82), and performing summation, we obtain
1 ! 1 {1
Zpk(n)(n—}——2—)lnn=(M+—2—)lnM+—§+O(M). (84)
n
The expressions for the moments of Poisson distribution are employed here. We
finally have
— V\perinpun) = 5 In @neMd) + 0 () (85)
n=0
We may readily find the arbitrary entropy
He(n) = %Ep(k) In (2neM) , (86)
k

where M is a known function of k which is determined by relationship (79). We

thus have \
1 E : 2ne)e ™
Hk (n) =5 ake‘k" In [—G— k] . (87)
3

In order to perform summation, we must take the fact into account that k is
sufficiently large over the significant range within which it changes. There~
fore, we may replace summation by integration with a high degree of accuracy:

@ )\n
Hy (n) z%’f ISe*kk In [(—2—“2—“— k] dk . (88)
Since
1 a N -
Jp".Y NS SN Y )
G° (1+MG ks
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we have 316
[ -]

Ha(m) = gouIn2nel {etde + 3t (&4t Inl— okl di =
0 H (89)

= ln2neﬁ+ﬁfe-n>»k'kln [Ag | &
= . (2el R k.
0

We have here taken the fact into account that kk < 0. Introducing the sub-

stitution |Ak]k = X, we obtain

Hi (n) =;—ln 2neN + %fe—‘lnxdx. (90)
¢

The integral in the right hand side equals the Eiiler constant
Te—" Inxdx = C=~0,5777.
Thus, the final expression for ;Le arbitrary entropy will be
He(n) = 5 In2neCN . (91)

The entropy H (n) was already computed [see formula (14)]. For large occupation
numbers N, it equals

H (n)=In (eN). (92)

Thus, the efficiency of the quantum recorder is
. In2neCN _ 1 (1 L 2nC) 93
=1+ 2IneN 2 IneN /° (93)
For very large N, we may disregard the second term in (93), and then the
quantum recorder efficiency reaches its maximum value Nax = 5 The loss of

such a large amount of information may be explained by the fact that the
described quantum recorder which is physically ideal does not extract informa-
tion included in the signal phase. Actually, when N is sufficient large, a
quantum description of the photon field approximates a classical description
and, consequently, the phase information may comprise 507 of the total amount

of information.

The fact that it is impossible to extract all the information of the
signal by means of the quantum recorder does not mean that this same conclusion
must be reached for any other receiver. Actually, although the quantum channel
model which is employed assumes that a quantum recorder must be the optimum
receiver, the model itself is not the only possible one. As was indicated
above, the quantum channel may be described not only by the number of photons
in each element AtAv, but also by any other selection of independent variables,
provided that their total number is W. TIn particular, for large N a phase /317
description of the signal is possible. Therefore, we may expect that a phase-
sensitive receiver will be more efficient under these conditions than a quantum
recorder. This assumption will be substantiated below when a coherent amplifier

is examined.
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Coherent Amplifier

A quantum mechanical or parametric amplifier with a high amplification
factor G may be employed as a coherent amplifier. It is valid to assume (Ref.
10, Ref. 11) that the noise at the amplifier output may be described by means
of the effective noise at its input, which is expressed in terms of the volt-
age potential between tle input signal and the noise, and increases classical-
ly [this is only valid for oscillations of zero field (Ref. 13)]. 1In the case
©0f the quantum mechanical amplifier, the stremgth of the effective noise may be
determined by the following expression

W S .| AS—
ORee=C | — v, T [ __ﬂ_ﬁ‘ (94)
efer,) = e (Car
where TL is the temperature of the attenuator and the amplifier wave guide;
TM —- negative temperature of the amplifying quantum ensemble. 1In an ideal
temperature regime, TL =0, |Tm| = 0 and Peff. min. - hvW. A similar expression

may be obtained for a parametric amplifier. Since we have assumed that G > 1,
consequently the strength of the output noise resulting from Peff is always

very much greater than the strength of the quantum noise hvW In view of this
fact, we may write the following with a high degree of accuracy

Pa
Canp:Wln (l + Pn—-i—W)' (95)
where
1 1
e T S A (96)
()=t 1+ee (~amy)

Even for the optimum case, when m = 1, after coherent amplification the amount
of information is decreased. Figure 9 shows the dependence of the amplifier
efficiency
Cam
1=, (97)
where C0 =W ln (1 + Pa/Pn) for different values of the noise Pn W = 109 cps,
Tn = 290°K). For small values of Pn ~ hvW, the efficiency of the coherent

amplifier rapidly decreases. As we have seen, under these conditions the
quantum recorder is more efficient. If Pn >> hvW, the coherent amplifier ex-~

tracts practically all of the information included in the signal.

[eo]

Conclusion 31

The basic assumptions of information theory change radically in the
optical and infrared bands for a low level of eigen noise in the communication
channel. The results presented above provide a comprehensive concept of the
characteristics of the quantum channel. The general expression for the entropy
capacity of narrow-band and wide-band communication systems was obtained, and
the requirements for optimum signal characteristics were determined. The
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application of theory to am investigation of several receiving devices enabled
us to clarify certain laws which are not described by c¢lassical theory. These
laws were used to make recommendations regarding the use of a certain receiver
in each specific case. We may sum up the results as follows.

1. A quantum narrow-band channel has a discrete photon distribution
function, at which the signal entropy in the channel reaches a maximum. This
function may be described by the exponential relationship

p(n) = ael,

wheren = 0, 1, 2 ...

2. The signal entropy in a wide-band quantum channel reaches a maximum
when the field of this signal coincides with the radiation field of an
absolutely black body:

N = [exp (%)—— 1]—l ]

I1f there is additive thermal noise in the channel, the information capacity is
at a maximum when this requirement is imposed on the total signal-noise
ensemble.

The entropy capacity is always finite, and is limited by the following

value
1

2
2P
Hipax= n[ﬁ] .

3. There are significant quantum phenomena in the case hvWw ~ P . If
hvW « Pn,
which we obtain P

H=In P—a

n

The only difference from the classical result is that now the absolute level
from which the entropy is measured is established. This level is determined
by the strength of the quantum noise.

we may completely change to the classical theory, as a result of

4. A binary quantum recorder is the optimum recorder with respect to the
information efficiency n for small signal intensities at the input of the
receiving device, for which hw < P , If P >>hvW, then the ideal energy-

= a a

sensitive receiver of the wave guide maser type cannot extract more than half /319
of the information contained in the signal. Under these conditions, a
coherent amplifier is the optimum device. The efficiency of this amplifier can

be set very close to unity.
Kiev State University imeni T. G. Shevchenko
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